797 research outputs found

    Shell model calculation of the beta- and beta+ partial halflifes of 54Mn and other unique second forbidden beta decays

    Full text link
    The nucleus 54Mn has been observed in cosmic rays. In astrophysical environments it is fully stripped of its atomic electrons and its decay is dominated by the beta- branch to the 54Fe ground state. Application of 54Mn based chronometer to study the confinement of the iron group cosmic rays requires knowledge of the corresponding halflife, but its measurement is impossible at the present time. However, the branching ratio for the related beta+ decay of 54Mn was determined recently. We use the shell model with only a minimal truncation and calculate both beta+ and beta- decay rates of 54Mn. Good agreement for the beta+ branch suggests that the calculated partial halflife of the beta- decay, (4.94 \pm 0.06) x 10^5 years, should be reliable. However, this halflife is noticeably shorter than the range 1-2 x 10^6 y indicated by the fit based on the 54Mn abundance in cosmic rays. We also evaluate other known unique second forbidden beta decays from the nuclear p and sd shells (10Be, 22Na, and two decay branches of 26Al) and show that the shell model can describe them with reasonable accuracy as well.Comment: 4 pages, RevTeX, 2 figure

    Propagation of cosmic-ray nucleons in the Galaxy

    Full text link
    We describe a method for the numerical computation of the propagation of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and 10Be/9Be ratios. Models with diffusion and convection do not account well for the observed energy dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propagation region is determined, using recent 10Be/9Be measurements, as >4 kpc for diffusion/convection models and 4-12 kpc for reacceleration models. For convection models we set an upper limit on the velocity gradient of dV/dz < 7 km/s/kpc. The radial distribution of cosmic-ray sources required is broader than current estimates of the SNR distribution for all halo sizes. Full details of the numerical method used to solve the cosmic-ray propagation equation are given.Comment: 15 pages including 23 ps-figures and 3 tables, latex2e, uses emulateapj.sty (ver. of 11 May 1998, enclosed), apjfonts.sty, timesfonts.sty. To be published in ApJ 1998, v.509 (December 10 issue). More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.html Some references are correcte

    New Measurement of the Cosmic-Ray Positron Fraction from 5 to 15 GeV

    Get PDF
    We present a new measurement of the cosmic-ray positron fraction at energies between 5 and 15 GeV with the balloon-borne HEAT-pbar instrument in the spring of 2000. The data presented here are compatible with our previous measurements, obtained with a different instrument. The combined data from the three HEAT flights indicate a small positron flux of non-standard origin above 5 GeV. We compare the new measurement with earlier data obtained with the HEAT-e+- instrument, during the opposite epoch of the solar cycle, and conclude that our measurements do not support predictions of charge sign dependent solar modulation of the positron abundance at 5 GeV.Comment: accepted for publication in PR

    Numerical propagation of high energy cosmic rays in the Galaxy I: technical issues

    Full text link
    We present the results of a numerical simulation of propagation of cosmic rays with energy above 101510^{15} eV in a complex magnetic field, made in general of a large scale component and a turbulent component. Several configurations are investigated that may represent specific aspects of a realistic magnetic field of the Galaxy, though the main purpose of this investigation is not to achieve a realistic description of the propagation in the Galaxy, but rather to assess the role of several effects that define the complex problem of propagation. Our simulations of Cosmic Rays in the Galaxy will be presented in Paper II. We identified several effects that are difficult to interpret in a purely diffusive approach and that play a crucial role in the propagation of cosmic rays in the complex magnetic field of the Galaxy. We discuss at length the problem of the extrapolation of our results to much lower energies where data are available on the confinement time of cosmic rays in the Galaxy. The confinement time and its dependence on particles' rigidity are crucial ingredients for 1) relating the source spectrum to the observed cosmic ray spectrum; 2) quantifying the production of light elements by spallation; 3) predicting the anisotropy as a function of energy.Comment: 29 pages, 12 figures, submitted to JCA

    Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    Full text link
    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.Comment: 11 pages, 8 figures, to appear in Phys. Rev. D (2000

    The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation

    Get PDF
    Observations of cosmic-ray electrons and positrons have been made with a new balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach and the data analysis procedures, and we present results from this flight. The measurement has provided a new determination of the individual energy spectra of electrons and positrons from 5 GeV to about 50 GeV, and of the combined "all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3 +/- 0.2, respectively. We find that a contribution from primary sources to the positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed. To appear in May 10, 1998 issue of Ap.

    Status of ANITA and ANITA-lite

    Full text link
    We describe a new experiment to search for neutrinos with energies above 3 x 10^18 eV based on the observation of short duration radio pulses that are emitted from neutrino-initiated cascades. The primary objective of the ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active Galactic Nuclei (AGN). We present first results obtained from the successful launch of a 2-antenna prototype instrument (called ANITA-lite) that circled Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary results from attenuation length studies of electromagnetic waves at radio frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive Events in the Universe", Erice, Italy, 2-13 July 200

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
    • …
    corecore